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S1 Related Works

S1.1 Optical see-through AR displays

AR displays primarily consist of a display unit and combiner optics,

which serve to display the virtual image and overlay it on the real-

world background, respectively. Optical see-through designs have

the advantage of allowing users to see the natural world simultane-

ously with the virtual content, which brings advantages in terms of

natural real-world interactions and immersion. However, the light

from the real-world background interferes with the virtual image

being displayed.

Several approaches have been proposed in commercial AR de-

vices to preserve contrast. Dimming ambient light using an active

per-pixel dimming layer [Cakmakci et al. 2004; Kiyokawa et al. 2000;

Magic Leap, Inc.] provides good control, but also increases the com-

plexity of the display design. As a consequence, some commercial

solutions [Microsoft Corporation] choose to adopt static dimming

�lters similar to sunglasses. While simple, this approach can degrade

the user’s experience - static dimming may become excessive in

dark environments, but insu�cient in overly bright ones. Finally,

an AR display that has good visibility without using any dimming

would require a strong display engine paired with high-throughput

imaging optics, which signi�cantly increases the required power

draw, which is challenging for a wearable device [Chen et al. 2024].

S1.2 Contrast-based rendering and assessments

Unlike machine vision cameras, the human visual system responds

di�erently based on the change of the visual signals over the back-

ground and the spatial frequency of such stimuli. Modern displays

leverage this perceptual behavior to develop advanced rendering

techniques such as foveated rendering [Guenter et al. 2012; Tur-

sun et al. 2019] and tone mapping [Reinhard 2020; Tumblin and

Rushmeier 1993], which spatially and photometrically redistribute

rendering resources to preserve visibility while operating within

limited computational resources.

As a counterpart, visual di�erence predictors [Daly 1992; Man-

tiuk et al. 2024], built upon contrast sensitivity functions, have been

widely used to evaluate the performance of the rendering techniques.

However, since these metrics are primarily tailored for conventional

direct-view displays, there was a recent observation that they may

not fully capture or predict content visibility shown in AR environ-

ments [Chapiro et al. 2024], highlighting the importance of low-level

investigations revisiting the contrast perception in such viewing

environments.
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S2 Experiment stimuli

Below, we provide a detailed description of the stimuli used in Ex-

periments 1 and 2. In both our experiments, the reference stimulus

was composed of foreground and background images, split over two

focal planes. Sec. S2.1- S2.2 explain how the reference foreground

and background images were generated, respectively. The test stim-

uli in both experiments consisted of a fused image displayed on a

single plane. The optical models used to create these stimuli are

explained in Sec. S2.3. The full matrix of stimuli used in Experiment

1 and 2 are presented in Tables S2- S3.

S2.1 Foreground image

For each contrast value, de�ned as the modulated signal over the

average signal, a sinusoidal grating representation can be generated,

modulated in the spatial domain (. (®D) ∈ R
�×+ ):

.FG,sine (®D) = .FG + Δ. cos(2cdD), (S1)

where, ®D denotes the two-dimensional spatial coordinate (D, E) of

the visual angles in degrees, d denotes the spatial frequency given

in a unit of cpd, and the Δ. is the modulation of the grating. Here,

we formulate the Weber contrast 2 = Δ./.FG.

The area of the grating that covers the visual �eld in�uences the

detection of the contrast [Rovamo et al. 1993]. Thus, we limit the

size of the sinusoidal grating and simultaneously smooth the edges

by applying a spatial aperture. A conventional way is to modulate

the contrast by a radial Gaussian envelope so that the resulting

stimulus forms a Gabor patch:

.FG,Gabor (®D) = .FG + Δ. cos(2cdD) exp

(

−
D2 + E2

2f2

)

(S2)

where, f adjusts the size of the Gaussian aperture in a unit of visual

degrees.

S2.2 Background image

The background patterns were generated as follows.

• flat: The ambient light formed by a �at background without

texture.

.�at (®D) = .0 . (S3)

• bp-noise: To add controllable texture, a bandpass-�ltered im-

age is computed as:

.bp-noise (®D) = R
(

F −1 (F (.white-noise) · H)
)

. (S4)

where, .white-noise is the generated white noise. F and F −1

are two-dimensional Fourier transform and its inverse, re-

spectively. R(·) is the real operator with the complex-valued

input, and H is the transfer function de�ned in the spatial

frequency domain corresponding to the bandpass �lter. For

the bandpass �lter, we employ the Butterworth �lter de�ned

in the frequency domain (®d) as:

H( ®d ; d0, f0) =
1

1 +
(

(
√

d2D + d2E − d0)/f0

)2=
(S5)

where, d0 is the central spatial frequency of the �lter and f0
is the bandwidth of the bandpass �lter, which are both in a

unit of cpd. In the experiment, we use the fourth order (= = 4)

Butterworth �lter with a central frequency matched to that

of the grating, and the �lter bandwidth f0 is set as 1 cpd.

• bp-noise-dynamic: To understand the e�ect of relative mo-

tion of the background on contrast perception, we addition-

ally formulate a dynamic background as:

.bp-noise-dynamic (®D; C) = .bp-noise (®D − ®D (C)) (S6)

where, ®D (C) denotes the additional temporal shift of the back-

ground due to potential movement while �xating on the fore-

ground. To de�ne the motion pro�le, we assume the occur-

rence of minor head movements, with a speed of 1 degree per

second, can still occur even in a constrained environments.

The direction of relative motion was chosen as orthogonal to

the orientation of the grating provided to the foreground.

S2.3 Optical fusion models

The optical fusion models used to generate test patterns are listed

in Table S1, adapted from the recent work of Chapiro et al. [2024].

Among the optical fusion models of foreground and background

stimuli, the pinhole model adds the background light without pro-

cessing. pinhole-diplopic adds the background light while account-

ing for diplopia, but not for defocus blur. This would be physically

accurate if the eyes were assumed to act as pinhole cameras. Lastly,

defocus-diplopic simulates both the diplopia and the defocus blur

present due to the dioptric distance of two stimuli.

Defocus blur is simulated based on themodel described byCholewiak

et al. [2018] given the pupil diameter (?). We convolve the back-

ground stimuli with the point spread function (ℎ(®D)) applying an

Table S1. Summary of optical fusion models.

Fusion model (5 ) Equation (.e� = 5 (.FG, .BG ))

pinhole (5% ) .e� = .FG +.BG
pinhole-diplopic (5%� ) .e� = .FG + 1

2

∑

9 ∈{L,R}
.BG ( ®D − ®D 9 )

defocus-diplopic (5�� ) .e� = .FG + 1
2

∑

9 ∈{L,R}
.BG ( ®D − ®D 9 ) ∗ ℎ ( ®D;Δ�, ?∗ )

Table S2. Conditions tested in Experiment 1. Reference (Ref) and test

(Test) pa�erns used di�erent combinations of foreground (FG) and back-

ground (BG). For the reference, we present two di�erent stimuli for fore-

ground and background and the background textures di�er by the test

conditions. The e�ective stimuli (.e�) are fused with di�erent optical blend-

ing models 58 and presented as test stimuli on the foreground.

FG BG

SP
Ref .FG,Gabor 0

Test .e� = 5% (.FG,Gabor, .BG ) 0

DF
Ref .FG,Gabor .�at
Test .e� = 5�� (.FG,Gabor, .BG ) 0

DNS
Ref .FG,Gabor .bp-noise
Test .e� = 5�� (.FG,Gabor, .BG ) 0

DND
Ref .FG,Gabor .bp-noise-dynamic

Test .e� = 5�� (.FG,Gabor, .BG ) 0

DNP
Ref .FG,Gabor .bp-noise
Test .e� = 5%� (.FG,Gabor, .BG ) 0

, Vol. 1, No. 1, Article . Publication date: September 2025.
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achromatic blur of a Gaussian kernel as

ℎ(®D;Δ�, ?) =
1

2cf2
exp

(

−
∥®D∥2

2f2

)

, (S7)

where, ∥·∥ denotes the ;-2 norm of the given vector and f is set as

: 180
c

?Δ�
2 . Δ� denotes the dioptric di�erence of the foreground and

the background. The value of blur scaling parameter : is chosen

as 0.55 from the model of Cholewiak et al. [2018]. This achromatic

Gaussian blur simpli�es the blur generation.

The simulated blur based on the predicted pupil diameter showed

signi�cant discrepancies with the actual blur present in AR scenes

in terms of appearance. To address this issue, we calibrated the

pupil diameter (?∗ = ?/B∗) by applying a user-speci�c scaling factor

(B∗), determined via a pre-experiment defocus blur-matching cali-

bration (explained later in Sec. S4). Additionally, we estimated the

interpupillary distance (8?3) of individuals through interactive cali-

bration using grids presented at two di�erent depth planes for each

eye and simulate the diplopic background using the formulation as

®DL/R =

(

tan−1
(

∓
8?3
2 Δ�

)

, 0
)

.

S3 Contrast matching training

Prior to the experiment, all participants were asked to complete a

short training session of contrast matching to familiarize themselves

with the concept of contrast matching, rather than matching other

features such as brightness. Here, the stimuli (. ) were controlled

for contrast as follows:

. (2) = (.img − .0)2 + .0, (S8)

where, .img represents the luminance of the original image, and .̄

is its mean luminance.

Using an image of six di�erent people’s faces, the reference, and

the test with di�erent contrast levels (2ref, and 2test) and luminance

levels (either, .0= 30 cd/m2 or 60 cd/m2) were presented. The con-

trast of the reference image was initialized randomly to be between

0.2 and 0.5, and that of the test image to be between 0.1 and 0.9. The

reference contrast range was set within the supra-threshold range

investigated in the main study.

As in the main experiments, observers adjusted a dial to match

the contrast of the test stimulus to that of the reference stimulus.

Results from 10 trials were recorded, and Fig. S1 shows the matched

contrast ratio (2test/2ref) for 17 users sorted in a descending order.

If the average log10 contrast ratio within an observer’s responses

exceeded certain thresholds (over 1.1 or under 0.9, experimentally

determined) presented as dashed lines in Fig. S1. One observer was

classi�ed as an outlier, and their results were thus excluded from

the main experiments. The median of the matched contrast ratios,

averaged across the remaining observers, was 1.00, indicating that

the observers did not provide biased contrast matches in this task.

S4 Defocus blur matching

In the paper (Sec. 3.1), we explained the need of using individualized

defocus blur parameters for each observer. This parameter is then

used to create the optically-fused single-plane stimuli as explained in

Sec. S2.3. Here we provide details of the method used to perform this

individual calibration, the results, and comparisons with existing

models from the literature.

Table S3. Conditions tested in Experiment 2. We opted to measure 2

di�erent spatial frequencies for the achromatic stimuli, but only the lower

frequency (2 cpd) for the chromatic ones. This is because the sensitivity of

the chromatic mechanisms of the visual system peaks towards lower spatial

frequencies. The contrast levels 2base for each color stimulus were chosen in

cone contrast units to be within the display gamut. The foreground of the

reference stimuli and the single-plane test stimuli had the same luminance

for each trial. The background luminance of the reference (.BG) were chosen

as described in Sec. 4.1 in the paper.

Color direction SF (cpd) 2base .FG / .test
( cd/m2)

.BG ( cd/m2)

Achromatic

2

0.3

1 2, 4.8

10 12, 55.7

100 442.7

0.8

1 2, 15.3

10 13, 160.4

100 98

4

0.3

1 2, 5.8

10 14, 80

100 108, 587

0.8

1 2, 21.4

10 15, 225

100 112

Red-green 2

0.07

1 1

10 14

100 101

0.1

1 2

10 15

100 104

Yellow-violet 2

0.3
10 12

100 96

0.8

1 2

10 15

100 109

Detailed procedure. We collected 10 trials per observer. Observers

were instructed tomatch the contrast of the noisy background on the

test to the contrast of the noise pattern of reference while focusing

at the �xation target shown on the front plane. The defocus blur

size of the test was adjusted with a controller similar to the main

experiment. Rather than measuring the size of defocus blur directly,

we estimated the parameter rescaling the pupil diameter predicted

by the model [Watson and Yellott 2012], allowsing us to employ this

measured value for di�erent luminance levels.

Although the reference included a �xation target in the fore-

ground, the accommodation state naturally shifted to the back-

ground as observers examined the noise pattern to make their de-

cisions. This natural response in focal shift made the task di�cult

for the untrained observers. If the median value of the measured

, Vol. 1, No. 1, Article . Publication date: September 2025.
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Fig. S1. Training result of 17 observers recruited for the experiments.

One of the observers (observer 17) was disqualified with the training results

and data was excluded. Observers are sorted by the matched contrast ratio

values, thus not following the observer ID presented in the paper.

scaling parameter exceeded 2, we repeated the session, allowing for

up to three cycles. If the measured scaling parameter still remained

over 2, we used the measured value in the main experiment.

Results. The defocus blur-matching results are shown in Fig. S2. It

can be observed that the experts who participated in the experi-

ment show consistent results over the trials, but a portion of naïve

observers performed the task relatively inconsistently. This result

indicates a potential cause of the larger variance in Experiment 1 for

the conditions involving defocus blur (DNS and DND) as compared

to the conditions that did not involve defocus blur (DF).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Observers

1

1.5

2

2.5

3

PD
 r

es
ca

lin
g 

pa
ra

m
et

er

Defocus blur-matching by group

Group 1 (Authors)
Group 2 (External observers)

Fig. S2. Individiual results of defocus blur-matching calibration. The

pupil diameter (PD) rescaling parameters were estimated 10 times for in-

dividual users and sorted by the standard deviation (The observer ID does

not match the one presented in the paper). The plots display the parameter

estimated across 10 trials, with the median value highlighted by a black

edge. Observers were categorized into two groups for analysis. (blue: Group

1 (authors), red : Group 2 (external observers))

Pilot study. In Experiment 1, the defocus blur generated by the

predicted pupil diameter model exhibited a signi�cant di�erence

compared to the pupil diameter interactively matched using the

defocus blur matching method, as shown in Fig. 6(B). To examine

the e�ect of defocus blur on the perceived contrast of the fore-

ground scene, we conducted a pilot study with a subset of ob-

servers participated the Experiment 1. This additional study in-

cluded test conditions dual-noise-static-Watson (DNS-W) and

dual-noise-dynamic-Watson (DND-W), which simulated the de-

focus blur using the predicted pupil diameter model. Note that the

dual-noise-static and dual-noise-dynamic in the main paper were

presented as dual-noise-static-Matched (DNS-M) and dual-noise-
dynamic-Matched (DND-M) to rule out potential confusion.

Figure S3 shows the results of the pilot study conducted with four

observers (3: authors and 1: naïve observer). These results indicate

that the simulated defocus blur, generated using the model [Watson

and Yellott 2012], blurs the textures more than the actual condition.

Note that the rescaling parameters shown in Fig. S2, are above 1.

Consequently, the observers adjusted the test contrast to a lower

level than the reference contrast as the masking from the back-

ground textures diminish in the test stimuli.

Fig. S3. Pilot study of Experiment 1. The test contrasts of four conditions

(light orange: DNS-W, light purple: DND-W, orange: DNS-M, and purple:

DND-M) are matched with four observers (black dots) and the 95% confi-

dence interval is provided as errorbar.

Pupil diameter measurements. For DNS and DND conditions, which

incorporated defocus blur to provide the test stimuli, we used the

pupil diameter obtained through defocus blur matching. This ap-

proach was necessary because our testbed lacked su�cient space

to place an eye tracker, and we aimed to maintain the size of the

defocus blur consistently throughout the experiment. In practice,

however, even with the same luminance level of stimuli presented,

the eye’s pupil diameter �uctuates over time, and measurements

are often a�ected by eye blinking, which let the interactive defocus

blur rendering challenging.

In Fig. S4, we present the pupil diameter data expanded with

measurements from a portion of observers. An eye tracker from

Pupil Labs was used to record the pupil diameter while observers

were exposed to the stimuli employed in defocus blur matching cali-

bration. The pupil diameter of the observer’s right eye was recorded

for a duration of one minute, which is su�ciently long to allow the

pupil to adapt to the luminance level. Portions of the data corrupted

by eye blinking were excluded to ensure data accuracy. A reference

scale bar was placed directly beneath the observer’s eye to scale

the recorded pupil diameter to physical size, and captured simulta-

neously. The measured pupil diameter showed a large per-subject

variation, and the discrepancy with the pupil diameter inversely

, Vol. 1, No. 1, Article . Publication date: September 2025.
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matched with the appearance supports the necessity of the defocus

blur matching task preceding Experiment 1.
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Pupil from defocus blur-matching
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Fig. S4. Pupil diameter profiles. We measured the pupil diameter of 9

out of 17 observers who participated in the defocus blur-matching calibra-

tion and they are sorted by the estimated size of pupil dimaeter following

Fig. 4. The error bars represent the standard deviation of the measurements

(yellow) and the standard deviation of the estimated values obtained from

the calibration (red).

S5 Individual bias in contrast matching

In the results of Experiment 1, we found that some naive observers

consistently matched towards higher test contrast, even under SP
conditions. This bias was often one-sided, as shown in Fig. S5. This

outcome was unexpected, as we conducted contrast matching train-

ing, and the results of the training, shown in Fig. S1, did not indicate

any bias.
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Fig. S5. Per-individual bias in contrast matching The plot presents the

matched test contrast in SP conditions in two di�erent reference contrast

levels (�AR=0.2 (light blue), and 0.3 (blue)) and the L1 error (orange) between

the matched test contrast and the reference contrast sorted per individual

observers. Observers were anonymized but categorized into two groups

(blue: author, and black: external observer).

S6 Data analysis

In both Experiments 1 and 2, each data point was calculated as the

median of the log-contrast values across ten trials for each observer

in each condition. Using the median minimizes the in�uence of

outliers or extreme values, which can occur due to variability in

observer performance or environmental factors during the experi-

ment. The medians from individual observers were then averaged

across all participants to compute the �nal data points for each con-

dition. All further analysis is then performed on either the averaged

data across the sample or the individual observers’ median data. All

analysis was also performed in log contrast units.

In the following sections, we present some additional statistical

analyses with the data from Experiment 1 to determine the signi�-

cance of the background discounting e�ect in AR.

S6.1 Statistical significance - Experiment 1

In the paper Sec. 3.1, we describe the statistical analyses conducted

to test the background discounting hypothesis. The full t-test results

are shown in Table S4, including both p-values and Cohen’s e�ect

sizes. The results indicate that the contrasts in the dual-flat (DF),
dual-noise-static (DNS), and dual-noise-dynamic (DND) condi-

tions were not signi�cantly di�erent from the physical contrast of

the stimulus. However, the dual-noise-pinhole (DNP) condition

showed a statistically signi�cant di�erence, highlighting the critical

role of simulated blur in achieving contrast matching in AR.

Table S4. Statistical comparison in Experiment 1 The table reports the

p-values (?) and Cohen’s d (3).

Comparison �AR=0.2 �AR=0.3

DF vs.�AR ? = 0.904, 3 = 0.031 ? = 0.215, 3 = 0.324

DNS vs.�AR ? = 0.106, 3 = 0.431 ? = 0.122, 3 = 0.410

DND vs.�AR ? = 0.925, 3 = 0.024 ? = 0.665, 3 = 0.110

DNP vs.�AR ? < 0.001, 3 = 1.567 ? < 0.001, 3 = 1.331

S6.2 Power analysis - Experiment 1

We conducted a power analysis to evaluate the su�ciency of our

sample size to detect e�ects with 80% power at a signi�cance level

of U = 0.05, using one-tailed tests. For large e�ect sizes (3 > 0.8, e.g.,

3 = 1.567 in condition DNP for 2AR = 0.2), the current sample size

of = = 16was more than adequate, requiring as few as 6 participants.

For moderate e�ect sizes (3 ≈ 0.5, e.g., 3 = 0.431 in condition DNS
for 2AR = 0.2), a sample size of 40∼ 50 observers would be necessary

to achieve su�cient power. For small e�ect sizes (3 < 0.2), the

required sample would exceed 500 observers, making detection of

such e�ects impractical within the constraints of the current study.

For our purpose, the study design was appropriately powered to

detect large e�ects.

S7 Supra-threshold contrast models

Section 4 in our paper presented the two notable supra-threshold

models from the literature; the additive (Kulikowski) and the mul-

tiplicative (Peli) contrast models. In addition to these, we tested

our dataset and those from the literature on a few other models as

, Vol. 1, No. 1, Article . Publication date: September 2025.
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Table S5. Post-hoc sample size estimation for Experiment 1 The table

reports the estimated sample size (=) for the observed e�ect sizes in Table S4.

Comparison �AR=0.2 �AR=0.3

DF vs.�AR = = 8, 170 = = 77

DNS vs.�AR = = 45 = = 49

DND vs.�AR = = 13, 629 = = 651

DNP vs.�AR = = 6 = = 7

well. The supra-threshold contrast response is often characterized

as a non-linear contrast transducer function [Foley and Legge 1981;

Wilson 1980]. For a speci�ed test and reference stimulus, where the

contrast is perceptually matched, the responses of the transducer

functions can be assumed to be equal and presented as:

:test

(

2test

Ctest

)Wtest

= :ref

(

2ref
Cref

)Wref

, (S9)

where : and W are the model’s gain control (multiplier and exponent

respectively) parameters. The equation can be simpli�ed to predict

the test contrast as a function of the known variables:

2test = Ctest

(

:
2ref
Cref

)W

. (S10)

Cref and Ctest are the threshold contrast of the reference and test

stimuli respectively, and 2ref is the contrast of the reference stimulus

to be matched.

Another model of supra-threshold contrast matching was pro-

posed by Georgeson [1991], which is a modi�cation on Kulikowski’s

model. While Kulikowski’s model is a simple additive model of the

threshold contrasts, Georgesons’s model stipulates that for patterns

where the threshold contrast is disproportionately lower due to

limiting optical factors, neural noise, etc. the perception at supra-

threshold levels is not a�ected as much. A simple additive model

such as Kulikowski’s, would underestimate the perceived contrast

of such patterns. Georgeson proposed a non-linear model where

the perceived contrast is boosted when the di�erence between the

thresholds of the test and reference contrast is too high and call it

the “overconstancy model”. In this model, the response to a speci�ed

test contrast can be presented as:

'test =

(

2test − Ctest

2norm − Ctest

)<

, (S11)

where 2norm is the contrast at which the response of the mechanism

saturates, and< is the exponent of the transducer. To predict the

contrast value matched to a given reference contrast value, the

contrast overconstancy model can be rearranged as follows:

2test = (2norm − Ctest)

(

2ref − Cref
2norm − Cref

)@

+ Ctest . (S12)

@ is the combined exponent parameter for both the test and reference

contrasts, and can be optimized along with 2norm.

More recently, the model from Ashraf and Mantiuk [2024] evalu-

ated existing models—speci�cally, the additive model by Kulikowski

[1976] and the multiplicative model by Peli [1990]—and identi�ed

their limitations in accurately predicting contrast matching over a

broad luminance range for the HDR dataset in Ashraf et al. [2022].

To address these shortcomings, they proposed a hybrid model that

integrates both additive and multiplicative components. The model

accounts for threshold ratios and di�erences, optimizing its pa-

rameters through regression analysis. The model is summarized as

follows:

2test = X (AC ) (2ref)
W + U (ΔC ), (S13a)

X (AC ) = X<AC + X8 , (S13b)

U (ΔC ) = U<ΔC + U8 , (S13c)

AC =

Cref
Ctest

, (S13d)

ΔC = Cref − Ctest (S13e)

where W, X<, X8 , U< , and U8 are the model parameters. W accounts for

the non-linearity between the matched contrasts. The X (·) function

represents a scaling factor for the reference contrast, dependent

on the threshold ratio (AC ) with X< , and X8 as the slopes and the

intercepts of this linear relationship. Similarly, the U (·) adjusts the

contribution of the threshold di�erence (ΔC ) with its linear depen-

dence on U< , and U8 , which are respectively the slope and intercept

of this adjustment.

S7.1 Validation with other datasets

Sec. 4.2 in the paper provides details of the training method used

to validate the contrast matching models. This validation is based

on the dataset from our study (Experiment 2) as well as additional

datasets from the literature. Table S6 provides the dataset used in

supra-threshold contrast modeling. From the reported dimensions of

the stimuli used in each of the studies, it can be seen that the datasets

encompass awide range of stimuli and experimental conditions. This

was done to evaluate the models’ generalizability across di�erent

supra-threshold contrast perception scenarios.

S8 Additional details

S8.1 Experimental setup

Projector Diffuser

Fresnel

lens

LCD

Mirrors

Beam 

splitters

Fig. S6. Detailed schematic of the experimental setup.

The dual-layer haploscope, as shown in Fig. S6, is constructed

using a stack comprising a projector, di�users, a Fresnel lens, and
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Table S6. Summary of datasets used in supra-threshold contrast modeling. The table includes experimental stimuli, input dimensions, and matching

axes (Y: Luminance, SF: Spatial Frequency, and C: Color).

Dataset Stimulus (Aperture) Dimensions Protocol Matching Axes No. of data points

[Ashraf et al. 2022] Grating (Gaussian) Y, SF, C Matching Y 505

[Georgeson and Sullivan 1975] Grating (Rectangular) Y, SF Matching Y, SF 82

[Kulikowski 1976] Grating (Rectangular) Y Matching Y 46

[Hess 1990] Grating (Rectangular) Y, SF Matching Y 72

AR matching (ours) Grating (Gaussian) Y, SF, C Matching Y 32

Mushroom Coral

Valley Spider

Fig. S7. Assets used in Experiment 3.Mushroom: CC BY-SA 4.0, provided

by serlo.org. Coral: CC BY-SA 2.0, sourced from Flickr and was captured by

Ma� Kie�er. Valley: CC BY-SA 3.0, sourced from Wikimedia Commons, and

a�ributed to Tobi 87. Spider: public domain under the CC0 1.0, Universal

license and was obtained from Stockvault.

an LCD to deliver dual-layer HDR images to individual eyes. The

Fresnel lens (Comar Optics) is positioned at the center of the display

stack to e�ciently converge the backlight toward the viewing zone,

maximizing light usage. It is sandwiched with two di�users (a prod-

uct of Luminit) having narrow di�using angles (5, and 10 degrees,

respectively). The alignment of the overall display layers is per-

formed prior to the experiment, and the 3D geometric calibration is

performed per individual to compensate the layer image alignment

due to the individual di�erence of the interpupilary distance.

S8.2 Stimuli used in Experiment 3

Fig. S7 presents four images used for the Experiment 3. These are

the images that with most uniform histograms in terms of mapped

luminance values in the DIV2K dataset [Agustsson and Timofte

2017].

S8.3 Additional results - Experiment 3

Per-image results of Experiment 3. We present additional results of

contrast matching with complex images in Fig. S8, processed on a

per-image basis. Although there are slight variations in measure-

ments between di�erent images, our image-independent contrast

matching model predicts the individual measured values with good

accuracy.

Validation with di�erent distance types and contrast scaling opera-

tors. Equation 12 uses logarithmic scaling to re�ect the non-linear

Table S7. Validation RMSE with di�erent distance types and scaling

operations. The lowest RMSE is bolded.

Scaling Type / Distance L1 Lp (? = 1.5) L2

log 0.142 0.208 0.252

linear 0.606 0.622 0.632

sqrt 0.468 0.482 0.491

perception of contrast, and applies the L1 distance to compute the

di�erence between the test and reference displays. Table S7 presents

the validation RMSE for di�erent combinations of distance types

(L1, Lp (? = 1.5), and L2) and contrast scaling methods (log, linear,

and sqrt). Lp (? = 1.5) refers to the Minkowski distance of order 1.5.
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Fig. S8. Results of Experiment 3 per image. Each plot is additionally presented with RMSE showing on the top.
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