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Fig. 1. Our optical-see-through augmented reality testbed (le�) was built to evaluate the impact of video distortions on perceived quality in the presence of

environment light. The background plane is shown with a static pa�ern, while the virtual plane, positioned closer to user, displays stimulus videos (center).

Several display distortions were investigated in a pairwise comparison video quality assessment experiment (right, enlarged detail of content in the red box).

The perception of visual content in optical-see-through augmented reality

(AR) devices is a�ected by the light coming from the environment. This

additional light interacts with the content in a non-trivial manner because

of the illusion of transparency, di�erent focal depths, and motion parallax.

To investigate the impact of environment light on display artifact visibility

(such as blur or color fringes), we created the �rst subjective quality dataset

targeted toward augmented reality displays. Our study consisted of 6 scenes,

each a�ected by one of 6 distortions at two strength levels, seen against one

of 3 background patterns shown at 2 luminance levels: 432 conditions in

total. Our dataset shows that environment light has a much smaller masking

e�ect than expected. Further, we show that this e�ect cannot be explained by

compositing of the AR-content with the background using optical blending

models. As a consequence, we demonstrate that existing video qualitymetrics

perform worse than expected when predicting the perceived magnitude of

degradation in AR displays, motivating further research.
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1 INTRODUCTION

Optical-see-through augmented reality (OST-AR) displays form an

additive image, typically at a single focal depth, that blends with

light coming from the real world. An image shown on such a display

may appear transparent against the background, but this e�ect is

di�erent from naturally occurring transparency, which is typically

the result of modulating transmitted light rather than adding new

light, as is the case in OST-AR displays. Moreover, there is evidence

showing that observers can partially discount either the light coming

from the environment or the display [Murdoch 2020; Zhang 2022]

when the virtual content is perceived as transparent [Singh and

Anderson 2002]. This e�ect is sometimes associated with veiling

luminance, which is discounted to preserve lightness perception

[Gilchrist and Jacobsen 1983]. Further, because the environment

and display light come from di�erent focal depths and are typically

not perfectly aligned, the visual system may gain additional cues,

allowing it to partially discard either source of light.

Given the information above, we cannot assume that content

seen on AR displays will be perceived in the same way as con-

tent shown on traditional displays. Because of this, image/video

quality metrics intended for regular display may not perform as

expected when used with AR content. To investigate the e�ect of

environment (background) light in AR on quality assessment, we

created a new video quality dataset: the Augmented Reality Display

Artifact Video Dataset or AR-DAVID1 Similar to recent work for

traditional displays [Mantiuk et al. 2024], AR-DAVID measured the

loss of quality due to display distortions, such as blur, contrast loss

1Project page: https://www.cl.cam.ac.uk/research/rainbow/projects/ardavid/
Dataset: https://doi.org/10.17863/CAM.111909
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due to elevated black level, color fringes, spatiotemporal dithering,

light source non-uniformity (LSNU) or waveguide non-uniformity

(WGNU) (see the right panel in Fig. 1).

AR-DAVID is the �rst large-scale visual quality dataset conducted

on a custom OST-AR test bed (a haploscope with beam splitters,

shown in the left panel on Fig. 1). Distortions were measured for six

representative video clips shown over three di�erent background

patterns at one of two luminance levels (10 and 100 cd/m2). In total,

the dataset consists of 432 unique distorted videos. 55 users took

part, and over 11 000 pairwise comparisons were gathered.

To adapt image and video quality metrics to our AR content,

we designed �ve models simulating the optical blending of the

foreground video with the background patterns. We tested 16 state-

of-the-art metrics in combination with these blending strategies to

examine their accuracy for this new application.

Our main contribution is the AR-DAVID dataset, revealing that

the masking e�ect of the background in OST-AR is much weaker

than what would be expected from the optical blending of the light.

2 RELATED WORK

2.1 Perception in OST-AR

The main di�erence between OST-AR and traditional display is the

presence of the visible background, in which real objects are oc-

cluded by virtual content shown on the display. In turn, the visibility

of the virtual content is a�ected by the background content. The

most straightforward solution to this problem is to make virtual

objects much brighter than the real environment so that the contrast

of the background is masked following the Weber law. However,

this requires virtual objects to be up to 60× brighter than the real

scene [Liu et al. 2022]. To achieve such a luminance ratio, the real

scene can be dimmed by placing a passive light-attenuating layer

(e.g., neutral density �lter) on AR glasses. An alternative approach

is to block only a part of the real scene, depending on its geometri-

cal relation to the virtual content. However, achieving pixel-wise

blocking adaptive to the background can be challenging in terms of

the form factor [Gao et al. 2012] of the displays with additional 3D

occlusion [Rathinavel et al. 2019] capabilities and latency require-

ments [Zou et al. 2021]. Instead, software-based adaptive solutions

to background intrusion have been introduced for overlaid projec-

tion displays [Menk and Koch 2012], focusing on color matching

tasks and accelerated by computation-e�cient solutions [Hincapié-

Ramos et al. 2015]. More recently, Zhang et al. [2021] enhanced

the color contrast by optimizing the display pattern with several

perceptually-driven constraints. However, these solutions do not

solve the occlusion problem, leaving the OST-AR scenes to appear

partially transparent.

The human visual response to transparent objects has been shown

to be challenging to explain based solely on the physical charac-

teristics of individual objects. This is sometimes referred to as the

scission e�ect [Metelli 1974]. Consequently, this approach has led re-

searchers tomodelingAR overlays via non-physical weighted sum of

AR foreground and real-scene background. In color matching tasks,

Hassani [2019] observed a biased weight on the AR foreground,

discounting the e�ect of the background. However, Murdoch [2020]

introduced contradictory results in the brightness matching tasks,

suggesting the discounting of foreground weight instead, with de-

pendence on object size. These inconsistent results extended the

investigation towards color matching tasks [Zhang 2022] under

several luminance conditions, where the weight deviated signi�-

cantly from unity, particularly with cool background temperatures

and low luminance levels. While experimental conditions typically

involve �at surfaces at identical depths, natural scenes contain a

range of spatial frequencies [Geisler 2008] and depth distributions.

The complexity of backgrounds introduces additional dimensions

to the AR overlay, making explicit modeling non-trivial.

2.2 AR quality datasets

Most video quality datasets originate from the signal processing

community and are meant to capture the e�ect of streaming or video

compression distortions [Min et al. 2024]. Datasets originating from

the computer graphics community sometimes target other topics,

like geometric distortions [Nehmé et al. 2023; Wolski et al. 2022] or

distortions found in foveated rendering [Mantiuk et al. 2021].

In this work, we focus on distortions present in AR displays, such

as color fringes or waveguide non-uniformity. By quantifying the

impact of this type of distortion on visual quality, we can optimize

display design to balance cost, performance, and quality. Closely

related work for traditional displays was recently done by Mantiuk

et al. [2024]. Their dataset contained 9 display distortion types at

3 strength levels, applied to 14 base video clips. Unlike this work,

their measurements were done in controlled conditions on a regular

display with no interference from the environment. In our work,

content is presented on an OST-AR prototype display, with the

virtual content superimposed on backgrounds that simulate aspects

of real-world environments. As no video-quality datasets capturing

the perception of distortions in OST-AR exist today, our work is

meant to �ll this gap and enable rigorous display quality research

for this display modality going forward.

2.3 �ality metrics for AR displays

When assessing content quality in OST-AR, we need to consider

how they di�er from regular displays and how this may a�ect im-

age quality. AR headsets are often equipped with stereoscopic dis-

plays. Incorrectly presented stereo content can lead to vergence-

accommodation con�ict [Koulieris et al. 2017], binocular rivalry

[Wang et al. 2024], or induce VR-sickness in the presence of con�ict-

ing cues [Eftekharifar et al. 2021]. In this work, we do not consider

stereoscopic distortions, but we introduce disparity between the

foreground virtual plane and the background environment.

The unique optical properties of OST-AR are typically modeled

in linear (photometric/colorimetric) color spaces to preserve phys-

ical accuracy. In addition, the blending of light coming from the

background can also be modeled in a linear color space. As a conse-

quence, quality metrics for OST-AR may bene�t from operating on

photometric (or colorimetric) quantities, for example, by taking CIE

XYZ trichromatic pixel values as input.

Color di�erence metrics, such as CIEDE2000 [Sharma et al. 2005]

or Delta-ITP [Lu et al. 2016], directly operate on colorimetric quan-

tities but do not model any spatiotemporal aspects of vision. Other

ACM Trans. Graph., Vol. 43, No. 6, Article 186. Publication date: December 2024.
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Fig. 2. The optical arrangement of the haploscope used in our experiment.

models,such as the visual di�erence predictors including the origi-

nal VDP [Daly 1992], HDR-VDP [Mantiuk et al. 2011], FovVideoVDP

[Mantiuk et al. 2021] or ColorVideoVDP [Mantiuk et al. 2024], as

well as some HDR-capable metrics, including HDR-VQM [Narwaria

et al. 2015] model both spatial or temporal detail and photometry.

As an alternative, most existing metrics can be adapted to work with

photometric quantities by employing a transform function to map

input content into a perceptually uniform space [Aydın et al. 2008;

Mantiuk and Azimi 2021].

There are no metrics that can explicitly account for the perception

of content in OST-AR and, in particular, the e�ect of the background

real-world environment on the visibility of content detail or display-

related distortions. This paper is meant to provide the �rst dataset

serving as a starting point for research on this problem.

3 METHOD

3.1 Experiment setup

To create a perceptual dataset of distortions in OST-AR, we built a

custom test bed (see photo in Fig. 1 and schematic in Fig. 2).

Virtual plane. The virtual image was produced by two 31.1" Eizo

CG3146 professional reference displays, placed to either side of

the observer’s head. These monitors have a resolution of 4096 ×

2160, 60Hz frame rate, and a contrast value of one-million-to-one.

The displays were placed at an e�ective distance of 83 cm from the

observer (1.21 diopters (D)). This produced a �eld-of-view of 46◦ ×

26◦. Displayed pixels were replicated in a 2 × 2 pattern, obtaining

an e�ective resolution of 44.2 pixels-per-degree (ppd). These values

were selected to be comparable to commercially available AR devices

such as Hololens 2 (43◦ × 29◦ �eld of view, 33.5 ppd resolution), and

Magic Leap 2 (44◦ × 53◦ �eld of view, 32.7 ppd resolution).

Background plane. The background plane was shown on a 76" Dy-

naScan DK751DH5 screen, placed 210 cm away from the viewer (0.48

D). This distance provided a separation of 0.73 D between planes,

which was deemed su�cient to provide clear depth separation. Hav-

ing the background plane presented via a display was preferred over

alternatives (e.g. a poster illuminated by a light source) as a display

was easier to calibrate consistently, and allowed for dynamically

changing backgrounds between conditions.

Optical path. A pair of beam splitters (Edmunds Optics, neutral

response in the visible spectrum) were placed in the user’s optical

path, oriented at 45 degrees. The virtual plane images are produced

via re�ection (80%), and the background plane is seen through trans-

mitted light (20%).

Calibration. All three displays in the systemwere calibrated through

the beam splitters using a CS2000-A spectroradiometer. Virtual

plane displays were calibrated to a peak luminance of 300 nits,

with an sRGB EOTF and P3 color primaries. The background plane

display had a peak luminance of 1125 nits, and a gamma of 3.5.

All displays were set to a D65 whitepoint. In addition, foreground

displays were re-calibrated daily using the built-in colorimeter with

a custom externally-loaded calibration matrix to ensure minimal

drift throughout the study. The virtual display optical path was also

laser-aligned to ensure sub-pixel geometric positioning accuracy.

3.2 Stimuli

The stimuli consisted of a video shown on the foreground virtual

plane (simulating an OST-AR display), optically combined with a

static pattern shown on the background display (see Fig. 2).

Virtual plane. Content shown on the virtual plane was based on six

reference videos showing natural and rendered scenes (see Fig. 3).

To provide maximal coverage for plausible AR use, our dataset

includes scenes containing both human and animated subjects, high

frequencies and �at regions, text, animation, and user interfaces.

Three scenes (Caminandes, Emojis, Foliage) were selected from the

dataset of Mantiuk et al. [2024], while the remaining scenes (Blog,

Messaging, Talking) were created for this study.

To produce distorted versions of the references, each video was

modi�ed using one of six distortions (blur, color fringes, contrast

loss, dither, light source nonuniformity, and waveguide nonuniformity,

shown in Fig. 4). These artifacts were produced in the same way as

detailed by Mantiuk et al. [2024]. As the background present in an

AR display is expected to mask the visibility of distortions, only the

two higher distortion levels (2 and 3) were included in this study.

To avoid excessive study size, two distortions presented by Man-

tiuk et al. [2024] were excluded as they produced very subtle metric

responses which could be expected to become invisible in an AR

scenario: Chroma Subsampling and Dynamic Correction Error.

Background content. The background content was formed by static

images (see Fig. 3). These were presented at two mean luminance

levels: 10 (dim) and 100 (bright) cd/m2. These luminance levels are

meant to model plausible brightness values present in indoor scenes

[Matsuda et al. 2022]. Three di�erent patterns were employed:

• A flat image was used to represent simple backgrounds, like

a featureless wall.

• A pink noise pattern (1/5 G power spectrumwith G ≈ 1.8) was

found to have a similar frequency pro�le to that of natural

images [Ruderman and Bialek 1993; Tolhurst et al. 1992].

ACM Trans. Graph., Vol. 43, No. 6, Article 186. Publication date: December 2024.
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Fig. 3. Six reference video sequences (top) and three backgrounds (bo�om) used to create AR-DAVID.
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Fig. 4. Seven types of artifacts introduced in the dataset.
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Fig. 5. Experimental procedure. A representation of the first experiment (top row) and second experiment (bo�om row), detailed in Section 3.3.

Table 1. Experimental conditions of AR-DAVID dataset.

Virtual Content # Background Content #

Base videos 6 Patterns 3

Distortions 6 Luminances 2

Magnitudes 2

We use this pattern to represent natural scenes with a scale-

invariant fractal nature, like trees or soil.

• An alternative model for natural scenes is the dead leaves

pattern [Lee et al. 2001]. Our image follows the implemen-

tation of Gousseau and Roue� [2003], which includes hard

edges between overlapping circles. This stimulus represents

scenes with large contrast edges, such as occlusions.

Table 1 summarizes all experimental conditions.

3.3 Experimental Procedure

We employed a 2 interval-foced-choice (2IFC) pairwise comparison

protocol with reference [Perez-Ortiz and Mantiuk 2017] to measure

the visible degradation in quality due to distortions. ASAP active

sampling [Mikhailiuk et al. 2021] was used to reduce the number of

comparisons by scheduling the pairs of conditions that resulted in

the largest information gain based on previous results.

Part 1. The �rst study involved comparing conditions presented on

the same background. This easier experimental task yields the best

accuracy for within-background comparisons. The reference was

always shown �rst, but users could navigate between the two test

videos and the reference at will afterwards.

Part 2. This study aimed to re�ne consistency cross-backgrounds.

Two test-reference pairs are presented, containing the same back-

ground within-pair. The backgrounds between pairs could di�er

arbitrarily (pattern and luminance). The user is tasked with answer-

ing which pair is more alike. Users always saw the reference for

each pair �rst, and were then able to toggle to the test video.

The experiment procedure is shown in Fig. 5. In both experiments,

users were not permitted to make a selection until they viewed all

test and reference videos, or before watching for at least 5 seconds.

In both parts, the base video on the virtual plane was always the

same within a given condition.

Participants and Procedures. 8 participants took part in a study pilot,

and an additional 55 participants joined for the main study (31 for

the �rst part, and 24 for the second). All participants signed informed

consent forms, and the experiment was approved by an independent

review board. The demographics of the participants were balanced

in terms of age and gender, but this information was not recorded

due to the IRB privacy policies. The experimental sessions lasted

an average of 50.2 minutes. Participants were screened for normal

or corrected-to-normal vision, and had to pass an Ishihara color

vision test. Prior to the study, users were instructed to select the

video with higher quality and/or fewer distortions; i.e. the one that

most resembles the reference. Following completion, a qualitative

3-question survey was collected: “How easy or di�cult did you

�nd the study? Why?”, “What was your strategy when picking a

video?”, and “Other comments?”, administered orally by the study

organizer. These qualitative responses were leveraged to adjust the

execution of the experiment, such as introducing a chair and chin

rest adjustment prior to each session in the main study.

3.4 Results

The results were scaled in a uni�ed cross-artifact perceptual scale

represented with just-objectionable-di�erence units (JODs) using

ACM Trans. Graph., Vol. 43, No. 6, Article 186. Publication date: December 2024.
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Fig. 6. AR-DAVID results Each line corresponds to one condition that is shown on di�erent backgrounds. The low distortion levels are shown as dashed lines,

and high distortion levels as continuous lines. The black error bar on the le� of each plot denotes the average 95% confidence intervals across the conditions

(not shown per condition to avoid clu�er).

the pwcmp software2. The reference’s quality was set to a value of

10 by convention, with lower values representing lower quality.

The results for each scene are shown in Fig. 6. The results show

a substantial e�ect of distortion level (dashed vs. continuous lines)

and per scene di�erences. For example, “Blur” and “Color fringes”

a�ected the most the two scenes containing text — “Blog” and “Mes-

saging”. However, the e�ect of backgrounds was moderate and

inconsistent across the scenes and distortions.

Our hypothesis was that high luminance backgrounds (100 cd/m2)

and those containing high-frequency patterns (noise and leaves)

should mask the foreground virtual content, and therefore reduce

2pwcmp software: https://github.com/mantiuk/pwcmp

the visibility of artifacts. The marginal distributions of the scaled

JOD scores across the six backgrounds, shown in Fig. 7, indicate

this e�ect is much smaller than expected. 2-way analysis of vari-

ance (ANOVA) showed that neither luminance of the background

(� (1, 428) = 0.12, ? = 0.73), nor the background pattern (� (2, 428) =

0.03, ? = 0.97) resulted in signi�cant di�erences in quality. This is an

unexpected �nding, as background luminance often exceeding the

foreground should have a strong masking e�ect, making distortions

less visible and in turn improving e�ective image quality scores.

Comparison with XR-DAVID. It is interesting to analyze how the

video qualitymeasured in AR di�ers from thatmeasured on a regular

ACM Trans. Graph., Vol. 43, No. 6, Article 186. Publication date: December 2024.
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display. We can achieve this by comparing our results with the XR-

DAVID dataset [Mantiuk et al. 2024], as three of the video clips used

(including base video, distortion types, and levels) were identical.

The scatter plot of quality values from both datasets, shown in

Fig. 8, indicates that two distortions, namely Contrast and Dither,
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+

Optical blending+

Average-lum

Fig. 9. Optical blending (A) Illustration that demonstrates the background

fusion into the full-reference video quality evaluation pipeline. (B) Five of

the six di�erent optical blending schemes (none, mean, pinhole, defocus,

and defocus-diplopic) are applied to the test image of Messaging, which

has a color fringes artifact, and the background image of bright leaves.

received consistently higher quality scores in AR-DAVID. This sug-

gests that these two distortions are less noticeable when seen on

an OST-AR display. This is an expected outcome as both distortions

are the most noticeable in the dark portion of the image, which was

the most a�ected by the background light. Contrast elevates the

black level, and Dither was introduced in the linear space, making

it more noticeable for darker tones. The other distortion types are

only moderately a�ected by the background in an OST-AR display.

We also do not observe a consistent trend for di�erent background

patterns and their luminance levels, as indicated by the ANOVA

results above.

4 EVALUATION OF QUALITY METRICS

Although many image and video quality metrics exist, none of them

were developed to model the perception of AR multi-focal scenes.

Therefore, in this section, we explore how well the existing image

and video quality metrics can predict the AR-DAVID dataset. To

adapt existing metrics to AR content, we use an evaluation pipeline

(Fig. 9(A)) that models the OST-AR content as seen on an AR display

(Fig. 9(B)). We compared six di�erent approaches:

• none — The metrics operate exclusively on the foreground

content, and the background content information is discarded.

• average-lum — The background content is approximated by

a uniform �eld with luminance equal to the average of the ac-

tual background. This approach simulates scenarios where a

detailed representation of the background cannot be obtained

(e.g. due to excessive power costs of continuously running a

camera), but its luminance can be measured with a less costly

ambient light sensor.

• pinhole — Foreground and background are added together

in a colorimetric linear (RGB) color space, assuming pinhole

optics (no defocus blur).

• pinhole-diplopic — The same as above, but the background is

seen as a double image. This assumes it cannot be binocularly

fused (e.g. due to e�ective disparity being too large).
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Fig. 10. Performance of the image/video quality metrics on our AR-DAVID

dataset, shown as Spearman’s rank-order correlation coe�icient (SROCC).

Di�erent colors/markers denote di�erent strategies of multi-focal fusion.

• defocus — Assuming that the observer is accommodated on

the foreground plane and the background is a�ected by the

resulting defocus blur.

• defocus-diplopic—Acombination of the defocus and diplopic

conditions.

The details of the optical blending methods are explained in the

Appendix, and the equations are summarized in Table 3.

4.1 Metric results

We selected 15 state-of-the-art image and video metrics and evalu-

ated their performance on the AR-DAVID dataset. The results for the

9 best-performingmetrics (Table 2) are shown in Fig. 10, and detailed

analysis for all 16 metrics can be found in the supplementary HTML

report. For each metric, we tested the 6 optical blending methods

discussed in Section 4. The metrics that can handle linear color

values as output by the blending methods, such as ColorVideoVDP

or FovVideoVDP, were used directly. For all other metrics, expect-

ing display-encoded (gamma-encoded) color values, we used the

PU21-encoding [Mantiuk and Azimi 2021] to ensure an appropriate

range of values and perceptual uniformity.

Table 2. �ality metrics used in our tests (8 best performing). The photo-

metric column indicates that the metric can accept photometric (absolute

linear) color values.

Metric Photometric

ColorVideoVDP [Mantiuk et al. 2024] Yes

DSS [Balanov et al. 2015] No

FovVideoVDP [Mantiuk et al. 2021] Yes

GMSD [Xue et al. 2014] No

HaarPSI [Reisenhofer et al. 2018] No

IW-SSIM [Wang and Li 2011] No

MDSI [Ziaei Nafchi et al. 2016] No

VMAF [Li et al. 2016] No

As expected, predicting AR-DAVID proved a challenging task for

most of the existing metrics. Notably, we report only Spearman’s

rank-order correlation coe�cients (SROCC) because the correlation

for most metrics was low, making the standard procedure of �tting

a logistic function (needed to compute RMSE and PLCC) unstable.

We introduced optical blending as a pre-processing step to adapt

existing metrics to multi-focal AR content. In Fig. 10, we can see

that the correlation values improved substantially for most metrics

after introducing any kind of optical blending (other than none).

Surprisingly, the simple average-lum blending resulted in the high-

est correlation coe�cients. More physically accurate optical blend-

ing methods, including defocus-diploptic, performed worse than

average-lum and also did not signi�cantly improve results when

compared to a simple pinhole blending. A detailed analysis of the

data (found in supplementary HTML report) revealed that the main

improvement of average-lum over other methods was in conditions

with the leaves background. The dark discs in this background pro-

vide “tunnels” that improve the visibility of selected artifacts, such

as the elevated black level for contrast distortion. The subjective

results suggest that most observers did not use these features when

judging quality and, therefore, the simpli�ed average-lum blending

that ignored them re�ected subjective data better.

Metric performance varied widely. The best performance was

observed for the two metrics operating on photometric units and

based on psychophysical models of human vision — ColorVideoVDP

and FovVideoVDP (SROCC of 0.73 and 0.76, respectively). The good

performance by ColorVideoVDP is not surprising, as this metric

was calibrated to predict display distortions similar to those found

in AR-DAVID. Nonetheless, it was not originally designed for OST-

AR content, and the SROCC correlation under the best-performing

blending model for AR-DAVID is a signi�cant decrease from the XR-

DAVID dataset [Mantiuk et al. 2024], for which the authors report

an SROCC value of 0.891. Some of that decrease can be explained

by the di�erences in the quality scores between the datasets, shown

in Fig. 8. The correlation values for all non-photometric metrics are

even lower, below 0.5 for all but two cases.

The reason for the metrics’ poor performance can be better under-

stood by inspecting the scatter plot of ColorVideoVDP predictions in

Fig. 11-left (similar results can be observed for FovVideoVDP). First,

we can observe that ColorVideoVDP predicts quality that is overall

higher than the actual subjective scores for the conditions shown
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Fig. 11. The predictions of ColorVideoVDP for average-lum blending (le�) and for the same blending but with the background discounted to 20% (right). The gray

lines connect conditions that di�er only in background luminance. Di�erent background pa�erns use di�erent marker shapes and di�erent luminance levels

use di�erent colors.

with a bright 100 cd/m2 background (i.e. red markers are shifted

towards the right side of the plot). This means that ColorVideoVDP

predicts a stronger masking e�ect of the background than what

was found in the subjective experiment. This could indicate that

users can use available cues (disparity, accommodation, and motion

parallax) and disassociate the foreground from the background on

an AR display. This creates an e�ective advantage in noticing details

or distortions in the virtual plane, as compared to what would be

expected in a single blended image.

Based on these results, we can conclude that strategies comprised

only of optical blending can help improve metric performance but

cannot fully explain the perception of content on AR displays.

Discounting background. The process of discounting the back-

ground by observers in AR is not fully understood, but some re-

searchers suggested that it can be modeled by attenuating an image

color by a scaling factor [Hassani 2019; Murdoch 2020]. We calcu-

lated FovVideoVDP and ColorVideoVDP scores for the average-lum

blending and the range of background weights from 0 (equivalent

to none) to 1 (equivalent to average-lum). The values of SROCC

in Fig. 12-left indicate that discounting background reduces metric

performance. However, the results for RMSE in Fig. 12-right indicate

that performance slightly improves with the background weight of

0.3 for FovVideoVDP and 0.2 for ColorVideoVDP. Because of other

factors that contribute to the uncertainty of those performance mea-

sures (error bars in Fig. 12), we cannot con�rm whether this simple

discounting strategy will always result in better metric performance.

However, when we investigate the scatter plot in Fig. 11-right, we

can see that the bias of 100 cd/m2 background has disappeared after

discounting the background with the weight of 0.2.
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Fig. 12. Performance of ColorVideoVDP and FovVideoVDP when the back-

ground image is discounted. The background image is a�enuated by the

background weight, shown on the x-axis. The shaded region denotes 95%

confidence interval.

5 CONCLUSIONS

The primary goal of this work was to obtain data that can help

evaluate and develop quality metrics suitable for AR applications.

To achieve this, we collected the �rst dataset of subjective responses

to a range of AR-speci�c display distortions, measured using an

OST-AR display using a variety of representative backgrounds. The

large number of conditions (432) and highly sensitive experimental

protocol using pairwise comparisons resulted in well-scaled data.
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A secondary goal was to extend existing quality metrics to han-

dle AR content with varying backgrounds. We tested several opti-

cal blending approaches, which resulted in signi�cantly improved

predictions (as compared to a baseline ignoring the background).

Despite this improvement, the accuracy of existing metrics for AR

content is signi�cantly reduced, showing that there is much room

for improvement.

We conclude that the perceptual models and paradigms used for

regular displays may not translate directly to OST-AR displays. In

particular, the perceptual aspects of the superposition of the virtual

image on the background as seen through the device cannot be

fully modelled as an optical mixture of light. The visual system has

been shown to be capable of separating the perceived scene into

“layers” to make near-accurate judgements on lightness [Gilchrist

and Jacobsen 1983], brightness [Murdoch 2020], transparency [Singh

and Anderson 2002], and illumination [Khang and Zaidi 2004]. Our

work shows that the visual system can also partially discount the

e�ect of the background when judging the quality of AR content,

reducing the masking e�ect of the background. We hope this work

inspires and facilitates further research on quality metrics for AR

applications.
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APPENDIX: OPTICAL BLENDING

The experimental setup is illustrated in Fig. 1, where two planes

represent the foreground (FG) and the background (BG). We assume

both planes are orthogonal to the visual axis and aligned. Each image

is converted to the CIE 1931 XYZ color space to ensure linearity,

based on modeling the display used in the experiment (see [Mantiuk

et al. 2024, Eq. 2]). The XYZ tristimulus values of the perceived image

(�e�) are then calculated as the sum of the values for foreground

(FG) and background (BG)each plane (�FG and �BG):

�e� = �FG +�BG . (1)

Here, the �e�, �FG, and �BG represent two-dimensional functions

of visual angle per color channel, but the notations of visual angle

are omitted here for brevity.

Focal fusion. The stimuli in our experiment consist of two planes,

each at di�erent distance from the eye. The near (foreground) plane

is at the diopter distance of �0 and the far (background) plane is at

the distance �0 + Δ� (distances shown in Fig. 2). Because the plane

separation (0.73 D) is greater than the blur discrimination threshold

(between 0.125D and 0.625D, depending on the frequency spectrum

of the images [Sebastian et al. 2015]), we can assume users focusing

on the foreground would perceive the background image as blurred.

The fused image (XYZ color space) with the defocus blur is com-

puted as:

�e� = �FG +�BG ∗ ℎ, (2)

where, ℎ represents the 2D point spread function (PSF), and ∗ repre-

sents a 2D convolution operator. The PSF is presented in a domain

Table 3. Summary of optical blending models. The<40= ( ) operation on

the tristimulus values represents a channel-dependent averaging operation.

Blending model Equation

none �e� = �FG

average-lum �e� = �FG +<40= (�BG )

pinhole �e� = �FG +�BG

defocus �e� = �FG +�BG ∗ ℎ

pinhole-diplopic �e� = �FG + 1
2

∑

:∈{L,R}
�BG ( ®D − ®D: )

defocus-diplopic �e� = �FG + 1
2

∑

:∈{L,R}
�BG ( ®D − ®D: ) ∗ ℎ ( ®D;Δ�, ? )

of visual angle (®D) in radian units, with parameters of the dioptric

di�erence Δ� , and pupil diameter of ? (in metric units), as follows:

ℎ(®D;Δ�, ?) =

{

1, ∥®D∥ < ?Δ�/2,

0, otherwise.
(3)

The PSF is estimated based on the mean luminance and size of the

stimuli, using the model of Watson and Yellott [2012]. ∥·∥ denotes

the ;-2 norm of the given vector. Here, the PSF is estimated without

accounting for human eye aberrations [Thibos et al. 1992] or di�rac-

tion e�ects from the pupil aperture, as the images are blended in

the display plane rather than the retinal plane. Note that the quality

metrics operate on the displayed image.

Binocular fusion. The disparity arising from the distance between

the foreground and background and the observer’s interpupillary

distance (IPD) may cause the background to be perceived as a dou-

ble (diplopic) image. The image perceived by each eye (�L/R: XYZ

tristimulus values as perceived by left or right eye) can be simu-

lated based on the geometry of the display system, assuming gaze

location at the center point of the foreground display. Since there

is no disparity between images positioned at the virtual plane’s

depth, only the background image is shifted for each eye, and the

corresponding values can be averaged as follows:

�BG =

1

2

∑

:∈{L,R}

�BG (®D − ®D: ), (4)

with the angular shift of the visual axis of the left or right eye

given as ®DL/R =

(

tan−1
(

∓
8?3
2
�0

)

, 0
)

. Although the IPD can vary

individually and e�ectively change with gaze direction [Konrad

et al. 2020], we make a simplifying assumption and set the e�ective

IPD to a representative value of 63 mm [Khang and Zaidi 2004]. In

lieu of sophisticated models for binocular fusion [Ding and Levi

2017; Ding and Sperling 2006], we employ a simple linear summation

model of binocular fusion in a linear color space. The formulations

of all optical blending strategies used in this work are provided in

Table 3.
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