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Accelerating a spatially varying aberration correction
of holographic displays with low-rank approximation
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Correction of spatially varying aberrations in holographic
displays often requires intractable computational loads. In
this Letter, we introduce a low-rank approximation method
that decomposes sub-holograms into a small number of
modes, thereby reformulating the computer-generated holo-
gram calculation into a summation of a few convolutions.
The low-rank approximation is carried out with two dif-
ferent algorithms: the Karhunen–Loeve transform as the
optimum solution with respect to the mean-squared error
criterion and a novel, to the best of our knowledge, opti-
mization method to provide uniform image quality over the
entire field of view. The proposed method is two orders of
magnitude faster than the conventional point-wise integra-
tion method in our experimental setup, with comparable
image quality.
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Recent progress in near-eye displays aims to achieve a pho-
torealistic image over a wide field of view for an immersive
user experience [1,2]. Although a high numerical aperture
eyepiece is necessary for a wide field of view, the optical
aberration from the eyepiece gets severe as the numerical
aperture increases. Spatially varying (SV) aberrations from
non-ideal off-axis behavior of the high numerical aperture
eyepiece hinder the realization of high-quality images over
the wide field of view in near-eye displays. In this respect,
holographic near-eye displays have been proposed, showing
their capabilities in correcting optical aberrations [3–5]. Since
the conventional point-wise integration method for SV aber-
ration correction requires an intractable computational load,
approximation methods such as spatially invariant (SI) correc-
tion, piece-wise correction, iterative optimization, and the deep
learning-based method have been proposed [4–9]. However, a
fast SV correction method with high reliability has not been
introduced.

Here, we propose a low-rank approximation method that
accelerates the calculation of a computer-generated hologram
(CGH) for SV aberration correction. The proposed low-rank
approximation method decomposes the sub-hologram into a
small number of modes, approximating the point-wise inte-
gration as a summation of a few convolutions between the

target image and the modes, as shown in Fig. 1. In addi-
tion, we present two sub-hologram decomposition methods: the
Karhunen–Loeve transform (KLT) and a uniform sub-hologram
decomposition (USHD). The KLT is a decomposition method
widely used in computer vision and computational imaging
[10–12]. We use the KLT as a baseline method since it offers
an optimum solution with respect to the mean-squared error
(MSE) of the sub-hologram reconstruction. Furthermore, we
propose the USHD as a novel decomposition method that opti-
mizes the modes to have identical reconstruction errors at every
target point. The USHD prevents the mode from being biased
to the frequent sub-holograms and delivers the image with uni-
form quality over the entire field of view. We experimentally
demonstrate the proposed method with a bench-top holographic
display and analyze the results with the image contrast and the
computation time.

SV aberration correction in holographic displays is performed
by finding the phase profile of the sub-hologram that recon-
structs a sharp point in the space. The point-wise integration
method sums up all the sub-holograms corresponding to every
point of the target [4]. In previous research, the phase profile
of the sub-hologram is expressed with Zernike polynomials that
are obtained with a manual calibration or optical simulation
[5,6]. Therefore, a complex amplitude of CGH usv with a target
amplitude atarget is expressed as

usv (x, y) =
∬

hx̃,ỹ (x − x̃, y − ỹ) atarget (x̃, ỹ) dx̃dỹ, (1)

where (x, y) is the CGH coordinate, (x̃, ỹ) is the target image
coordinate, and hx̃,ỹ is the sub-hologram at (x̃, ỹ). Since CGH
is calculated with quadruple loops over x̃, ỹ, x, y, the time com-
plexity of the point-wise integration method is O

(︁
NxNyMxMy

)︁
,

where Nx, Ny and Mx, My are the width and height of the image
and the sub-hologram, respectively. The computation time of
the point-wise integration ranges from tens of seconds to tens
of minutes for FHD images, even on high-performance graphics
processing unit (GPU) [4,5].

SI correction uses a single sub-hologram for every target point
and calculates the CGH with a convolution, neglecting the SV
characteristic of the sub-holograms. Since the convolution can
be replaced with a fast Fourier transform, the time complexity of
the SI correction is O

(︁
NxNy log

(︁
NxNy

)︁ )︁
, with an assumption of

Nx, Ny>Mx, My. Although the SI correction significantly shortens
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Fig. 1. Proposed low-rank approximation method. The phase
values of the sub-holograms, modes, weights, and CGH are used for
the visualization. (a) SV point spread functions and corresponding
sub-holograms. (b) Sub-holograms decomposed into a small num-
ber of modes and weights. (c) CGH for SV correction obtained by
a series of Hadamard products and convolutions.

the computation time, it only corrects the region near the point
where the sub-hologram is selected.

The proposed low-rank approximation method decomposes
the SV sub-holograms into a small number of modes with
corresponding weights. Therefore, we can estimate the sub-
hologram hx̃,ỹ as a weighted sum of the modes,

hx̃,ỹ (x, y) ≈
k∑︂

m=1

rm (x̃, ỹ) vm (x, y) , (2)

where k is a total number of the modes, m is an index of the
modes, vm is an mth mode, and rm is a weight corresponding to
vm. We note that rm is the SV weight in the target image domain,
and vm is the SI mode in the CGH domain. By substituting Eq. (2)
into Eq. (1), usv is approximated as

usv (x, y) ≈
k∑︂

m=1

vm (x, y) ∗
(︁
rm (x, y) · atarget (x, y)

)︁
, (3)

where ∗ denotes the convolution. The low-rank approximation
reformulates the point-wise integration into k convolutions of
the modes and the target image multiplied with the weights, as
shown in Fig. 1(c). The time complexity of the low-rank approx-
imation is O

(︁
kNxNy log

(︁
NxNy

)︁ )︁
, which is only k times slower

than the SI correction. Therefore, the low-rank approximation
can reduce the computation time with a sufficiently small k.

A straightforward way for the low-rank decomposition is to
minimize the total MSE of the reconstructed sub-holograms as

min
r,v

∑︂
∀x̃,ỹ

∥︁∥︁∥︁∥︁∥︁hx̃,ỹ −

k∑︂
m=1

rm (x̃, ỹ) vm

∥︁∥︁∥︁∥︁∥︁2

F

, (4)

where ∥·∥F denotes the Frobenius norm. A closed-form solution
of the Eq. (4) is already known as the KLT [10,11,13]. Therefore,

we can obtain optimal sub-hologram modes by applying the KLT
to the given sub-holograms. However, we observe that the KLT
fails to correct the aberrations in the periphery of the image. As
the aberration varies slowly near the optical axis, the KLT modes
are biased to the central region to minimize the total MSE.

The USHD resolves this issue by forcing the reconstruction
error to be identical regardless of the sub-hologram position. We
optimize the modes to have identical reconstruction error ēKLT

using the objective function

min
r,v

∑︂
∀x̃,ỹ

|︁|︁|︁|︁|︁|︁
∥︁∥︁∥︁∥︁∥︁hx̃,ỹ −

k∑︂
m=1

rm (x̃, ỹ) vm

∥︁∥︁∥︁∥︁∥︁2

F

− ēKLT

|︁|︁|︁|︁|︁|︁
2

, (5)

where ēKLT is the average of the total MSE with the KLT modes
vKLT and weights rKLT, which is expressed as

ēKLT =
1
N

∑︂
∀x̃,ỹ

∥︁∥︁∥︁∥︁∥︁hx̃,ỹ −

k∑︂
m=1

rKLT,m (x̃, ỹ) vKLT,m

∥︁∥︁∥︁∥︁∥︁2

F

. (6)

Here, N is the total number of the sub-holograms, which is iden-
tical to NxNy. Equation (5) forces every reconstruction error to
be ēKLT identically, while the total MSE is equal to that of the
KLT. In addition, we constrain the modes v to be orthonormal
to each other to express the weight rm as the inner product of the
modes vm and the sub-hologram hx̃,ỹ. We solve the given con-
strained optimization problem with projected gradient descent
(PGD), which performs alternations of gradient descent and
projection to a feasible domain [14]. Here, PGD repeats the
update of the modes via stochastic gradient descent followed by
orthonormalization of the modes using QR decomposition.

We demonstrate the proposed method with a bench-top holo-
graphic display, as shown in Fig. 2(a). The display system
consists of a laser diode (Thorlabs, CPS635F), a spatial light
modulator (Thorlabs, EXULUS-HD1), a linear polarizer LP,
collimating lens L1, and a 4-f system L2–L3. High-order and
DC noises are eliminated with the spatial filter in the 4-f sys-
tem. In addition, we adopt a tilted and shifted lens L4 with a
30-mm focal length to introduce SV aberrations. The captured
image of point spread functions without aberration correction is
shown in Fig. 2(b). The phase profile of the sub-hologram for
SV correction is measured with a manual calibration. The sub-
hologram with a diameter of 450 pixels is expressed with six
Zernike polynomials: 4th, 5th, 6th, 7th, 8th, and 11th in the Noll
index [15]. Both KLT and USHD algorithms are implemented
with PyTorch, and the CGH generation part is implemented
with CUDA C on a Nvidia RTX 3080Ti GPU. Furthermore, the
amplitude discard method is used to encode phase-only CGH
from the complex amplitude. In the USHD, we optimize the

Fig. 2. (a) Diagram of the bench-top holographic display. SLM,
spatial light modulator; L1, collimating lens; LP, linear polarizer;
L2–L3, 4-f filtering system; L4, tilted and shifted lens to intro-
duce SV aberration. (b) A captured image of point spread functions
without aberration correction.



Letter Vol. 47, No. 13 / 1 July 2022 / Optics Letters 3177

Fig. 3. Experimentally captured results with various aberration correction methods. The numbers in the parentheses indicate computation
time for a single CGH with corresponding methods. The results of SI correction demonstrate that our system has severe SV aberration, which
is corrected by the point-wise integration method. We can see the presence of the aberration in the periphery of the KLT results while the
USHD with the same number of modes corrects both central and peripheral aberration successfully.

Fig. 4. MTF curves measured at the center and the periphery
of the image with the various aberration correction methods. The
number of modes used in KLT and USHD is both 20.

modes for 50,000 iterations with 150 batches. The stochastic gra-
dient descent is performed with an ADAM optimizer in PyTorch
with a learning rate of 0.0001.

Figure 3 shows experimental results of the various aberration
correction methods in our holographic display setup. We digi-
tally combined the captured images reconstructed from 25 CGHs
with different random phases to reduce the speckle noise and
emphasize the impact of the aberration in the image. Although
the runtime of the SI correction is the shortest, 0.02 seconds,
it suffers from image quality degradation since the aberration
still remains even after the correction. In contrast, the point-
wise integration method has the longest runtime, 169 seconds,
with the best image quality. The proposed low-rank approxi-
mation method shows the results that are in between the SI
correction and the point-wise integration method. The runtime
of the low-rank approximation methods is 0.4 seconds, which is
approximately 420 times faster than the point-wise integration

method, while the results are comparable. However, we can see
from the result that KLT still shows image quality degradation
in the peripheral region. The USHD with the identical number
of modes successfully corrects the aberration in the peripheral
region with a slight sacrifice of the image quality in the center.

We compare the modulation transfer function (MTF) of
the KLT and the USHD in Fig. 4 to quantitatively show
that the USHD prevents the biasing of the modes. The MTF
is obtained by the intensity of 200×200 holographic images
of binary gratings, cropped at the center and the bottom
right. From the maximum intensity Imax and minimum inten-
sity Imin of the cropped images, the contrast is calculated by
(Imax − Imin) /(Imax + Imin). Figure 4 shows the MTF curves at the
center and the periphery with the various aberration correction
methods. Both KLT and USHD show higher image contrast com-
pared to the SI correction in the periphery. However, the MTF of
KLT at the center and the periphery largely differ because of the
mode biasing, as we discussed before. In contrast, USHD shows
similar MTF curves for both the center and periphery, placed
between two MTF curves of the KLT. We note here that the
overall low image contrast is due to the lack of an optimization
process for phase-only encoding during the CGH generation.
It can be further improved by combining the proposed method
with conventional CGH optimization methods [16,17].

In the low-rank approximation method, the image quality
increases and the calculation gets slower as the number of modes
increases, and vice versa. The experimental result of the low-
rank approximation method with a different number of modes
is shown in Fig. 5. Both KLT and USHD correct the aberration
better when more modes are used, while the runtime increases
linearly with an increasing number of modes. MTF curves in
Fig. 6(a), drawn with KLT and USHD with a different number
of modes in the periphery, also show that the increased num-
ber of modes leads to a higher image contrast in both methods.
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Fig. 5. Experimentally captured holographic images with a different number of modes in KLT and USHD. CGH calculation with a large
number of modes corrects the aberration better in both methods. The KLT results only get better in the periphery since the central region is
already corrected with only 10 modes. USHD results show image quality improvement at both the center and periphery. The numbers in the
parentheses indicate the computation time for a single CGH.

Fig. 6. (a) MTF curves of KLT and USHD with 10 and 50 modes,
all in the periphery. The contrast gets higher as the number of
modes increases. (b) Computation time versus the size of the target
image, measured on the GPU. The solid lines represent fitted curves
with corresponding time complexity. The low-rank approximation
significantly reduces the computation time compared to the point-
wise integration method.

Figure 6(b) shows the computation time of CGH versus the size
of the target image, measured on the GPU. The diameter of the
sub-hologram is 450 pixels, the same as in the experiment, and
the width and the height of the target image are identical. Solid
lines in the graph indicate the fitted curve with the corresponding
time complexity; O

(︁
NxNyMxMy

)︁
for the point-wise integration

and O
(︁
kNxNy log

(︁
NxNy

)︁ )︁
for the others. We can see that the

computation time of the low-rank approximation method is lin-
early proportional to the number of modes and far shorter than
the point-wise integration method.

In this work, we present the low-rank approximation method
for SV aberration correction in holographic displays, which
accelerates the conventional point-wise integration method by
420 times without noticeable artifacts in the image. Also,
the proposed USHD method provides an additional option of
improving the image quality in the periphery with a slight
sacrifice in the center, compared to the KLT. Although we
demonstrate our method with a monochromatic holographic dis-
play, our method can be adopted to a full-color display setup
easily by treating each color channel separately. In addition, our
results suffer from low contrast due to the amplitude discard
method used in the phase-only encoding. Future works could

improve the contrast of the image by plugging our method into
iterative CGH optimization methods and replacing the wavefront
propagation part during the CGH generation.
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